Кремниевые кубиты преодолели порог отказоустойчивости: рекорд спиновых кубитов приближает эру квантовых вычислений

Кремниевые кубиты преодолели порог отказоустойчивости: рекорд спиновых кубитов приближает эру квантовых вычислений
14:00, 13 Май.

В области квантовых вычислений кремниевые спиновые кубиты становятся ключевым элементом для создания отказоустойчивых систем. Последние исследования демонстрируют впечатляющие результаты: время когерентности достигло 0,5 секунды, точность однокубитных операций превысила 99,95%, а двухкубитные вентили преодолели порог, необходимый для коррекции ошибок.

Эти достижения стали возможны благодаря двум подходам — использованию квантовых точек, определяемых затворами, и систем на основе легирующих атомов, таких как фосфор.

Квантовые точки, создаваемые электрическими полями через нанопроводящие затворы, функционируют как «искусственные атомы», удерживая отдельные электроны.

Их производство совместимо с традиционными полупроводниковыми технологиями, что упрощает интеграцию с классической электроникой. Альтернативный метод — размещение легирующих атомов с помощью ионной имплантации или сканирующей туннельной микроскопии — обеспечивает атомарную точность, хотя требует изотопно чистого кремния для подавления ядерного шума.

Иллюстрация: Leonardo Управление кубитами осуществляется через электронный спиновый резонанс (ЭСР) или электрический дипольный спиновый резонанс (ЭДСР).

Последний, благодаря спин-орбитальному взаимодействию, позволяет избежать перекрёстных помех и ускорить операции.

Для двухкубитных вентилей ключевую роль играет обменное взаимодействие: вентили SWAP, CPHASE и CNOT реализуются за счёт контроля туннелирования электронов между точками.

Например, вентиль SWAP выполняется за 1/(4J) наносекунд, где J — сила обменного взаимодействия. Однако декогеренция остаётся вызовом. Зарядовый и ядерный шумы снижают время дефазировки (T2*), особенно в необогащённом кремнии.

Учёные борются с этим, используя изотопы кремния-28 и методы квантового неразрушающего считывания, которое достигает точности 99,975% за 980 нс. Другой проблемой является масштабирование: высокая плотность затворов и перекрёстные помехи осложняют создание массивов из сотен кубитов.

Решение видят в 3D-архитектурах и «шаттлинге» — перемещении кубитов между зонами обработки и памяти.

Перспективы технологии связаны с гибридными подходами. Например, интеграция спиновых кубитов со сверхпроводящими резонаторами позволяет передавать состояния через микроволновые фотоны, что важно для распределённых вычислений.

Уже достигнута сильная спин-фотонная связь с использованием микромагнитов, генерирующих синтетическое спин-орбитальное взаимодействие. Несмотря на прогресс, остаются некоторые открытые моменты.

Для квантовых точек, определяемых затворами, важно снизить чувствительность к зарядовому шуму, а для донорных систем — улучшить позиционирование атомов с точностью до 3 нм.

Учёные уверены: сочетание кремниевой совместимости, высокой точности и многообещающих экспериментов с «горячими кубитами» (работающими при 1 К) открывает путь к созданию универсальных квантовых компьютеров уже в следующем десятилетии.

Рубрика: Технологии и Наука. Читать весь текст на www.ixbt.com.